

JDEM-Ω Requires Modifications for WFIRST Mission

- NWNW indicates 500-day Microlensing Program
 - only 2 50-day observing windows per year
 - The bulge must be observed whenever it can be
 - Significant "edge effect" penalties for regular interruptions
- 0.5 year SNe program
 - Must sample high-z SNe
 - 160 days between Galactic bulge observing windows is not enough
- Some Modification of JDEM-Ω concept is needed to have a plausible WFIRST concept
 - Solutions are relatively straightforward
 - Otherwise we descope the science with no cost savings

NWNH Time Allocations

- High Latitude Survey: 2 years
- Microlensing Exoplanet Search: 500 days
- SNe Survey: 0.5 years
- GO Programs: 1 year
- Total = 4.868 years
- Unallocated = 48 days
 - Presumably available to Microlensing or SNe programs to make up for observing inefficiencies (10% of microlensing program or 26% of SNe program)

The Problem: JDEM-Ω Field of Regard

Possible Solutions

- Extend Bulge observing window to 62.5 days or 61.6°
 - 500 days of microlensing observations in 8 observing seasons
 - Allows 1.33 years of SNe observations without interruption by microlensing program
 - Add 48 unallocated days to make up for "edge" effects
- Extend Bulge observing window to 71.4 days or 70.4°
 - 500 days of microlensing observations in 7 observing seasons
 - Allows 1.80 years of SNe observations without interruption by microlensing program
- Longer Bulge observing windows are desirable
 - More flexibility in scheduling
 - Allows GO observations of bulge and anti-bulge directions
 - To be considered after June report?

Levi et al. (arXiv.org:1105.0959)

- 270 day bulge observing seasons
- Articulated solar arrays
- Aft sunshield
- Allows exoplanet dominated extended mission, should it be needed (i.e. if HZ proves to be much narrower than current estimates)

MPF Design

- Solar viewing angle
 - MPF: 45°-180°
- Articulated Solar Arrays
 - Moving parts
 - LMSS: 90 Iridium satellites with no failure
- Larger Sun Shield
- Thermal Design
 - Larger range of solar angles implies thermal control in wider range of solar heating conditions

Payload Central Line of Sight Field of Regard

Solar Power Generation

- JDEM-Ω allows ±30° angle between solar arrays and normal to the Sun's direction at end-of-life
- Assume 3.5% solar array degradation per year (MPF)
- Year 5: bulge observed at 60°-120° from the Sun: 2×60.8 days
- Year 4: bulge observed at 56.7°-123.3° from the Sun: 2×67.5 days
- Year 3: bulge observed at 53.8°-126.2° from the Sun: 2×72.4 days
- Year 2: bulge observed at 51.1°-128.9° from the Sun: 2×78.9 days
- Year 1: bulge observed at 48.7°-131.3° from the Sun: 2×83.7 days
- 7 microlensing seasons: Years 1-2, 4.5-5 = 514.3 days
- So, power for 500 days of microlensing observations in 7 seasons seems sufficient
- If we extend the Sun shields for the telescope and (possibly) the aft electronics boxes.

WFIRST Filters

- 7 filter slots: 5 filters, 1 prism, 1 opaque filter for calibrations
 - Exoplanet program wants to define 1 of 7 filters
- NWNH: exoplanet program "of equal importance" to dark energy
 - although requirements are mostly weaker
- NWNH: exoplanet science equivalent to ½ of expected output of MPF
- Current 1.3m off-axis design should be close to this (with 4×7 imager)
 - Perhaps 10% better, perhaps not
 - Estimated 40% hit from using the best WL filter
- Using the wide Microlensing Filter is the only option to achieve WFIRST Science
 - New detailed calculations in ~1 week